
EDUCAUSE QUARTERLY • Number 3 200048

G
etting college students to par-

ticipate in elections is a contin-

ual challenge for student gov-

ernments. Voting rates of 30 percent are

considered good and those in the single

digits are not unheard of. This student

apathy may only be a reflection of soci-

ety at large. Presidential elections attract

half the eligible voters, while off-year

congressional races bring out little more

than a third.1

In an attempt to combat this apathy

and increase voter participation, student

government often turns to technology

for answers. Information technology

staffs are getting requests to put student

elections on the Web.2 Given the various

projects that compete for our attention,

how should these requests be handled?

At Dickinson College in Carlisle, Pa.,

we conducted our first Web-based elec-

tion in April 2000. The “polls” were open

for 48 hours and more than 51 percent of

the students voted. Election results were

available immediately after polls closed.

We considered the project important as

a way to increase participation in elec-

tions as well as showcase the college’s

investment in technology.

Pros and Cons
In the past, student government elec-

tions involved paper ballots at a single

voting location, which controlled who

could vote. The system was both incon-

venient and susceptible to error. As

technology became more prominent on

college campuses, student leaders tried

to find ways to automate the election

process. Various options included stan-

dalone microcomputer voting, opscan

ballots, telephone balloting using an

interactive voice response (IVR) system,

and e-mail voting.3 The tremendous

growth of the World Wide Web in

recent years has made it the latest tech-

nology to be enlisted.

The Web provides a number of clear

advantages, including a central server to

provide control and widespread access

from almost any computer with an Inter-

net connection. Disadvantages include

potential security violations and the

possibility of disenfranchising voters

who are unable or unwilling to use the

technology. Web voting success on any

particular campus depends in part on the

campus environment. If you have a large

number of students without access to

computers or a history of hotly con-

tested elections, then Web voting may

not work.

Dickinson College is a private liberal

arts college with about 2,000 students.

All residence halls are networked and a

substantial number of students have

computers in their rooms. In addition,

networked computers are available in a

number of labs as well as the library and

the student union. We felt that using the

Web would not exclude any students

from the process.

Planning for Online
Elections
In cities with a history of political cor-

ruption, the motto on Election Day was

“vote early and vote often.” Obviously,

any Web-based election has to provide

basic security so that only eligible stu-

dents can vote and each voter can cast

only a single ballot. In devising a security

system, the challenge is striking a bal-

ance between security and convenience.

We decided to use a student’s e-mail

address as the unique ID for the elec-

tion. A four-digit PIN was generated

randomly for each student and sent via

e-mail. The assumption was that only

Student Elections Online

Dickinson College uses technology to get out the vote

by Paul Dempsey

In devising a security system,

the challenge is striking

a balance between security

and convenience.

G O O D I D E A S

the students had access to their individ-

ual e-mail accounts. Students already

knew their e-mail address and would just

need to remember the PIN to vote.

Dickinson’s Web server is configured

with an internal section that is only

available to computers on the campus

network (including residence halls).

After weighing the security and conve-

nience issues, we decided to run the

election on the internal section. Since

Dickinson is a residential college with a

small number of off-campus students,

the need for external access would be

small and was outweighed by the addi-

tional protection this set-up would pro-

vide against unauthorized use.

Preparing the Ballots
Next we had to create the Web pages

and programs that would be used in the

election. Our environment includes a

Netscape Enterprise Server running on a

Unix machine, with perl as the primary

programming language for the CGI

(common gateway interface) applica-

tions used to process Web forms. One

option was to “hard-code” the HTML

form that would be used for the ballot

and then create a custom perl program

to process it. While this approach would

be fairly straightforward, it was the least

flexible.

Another possibility was to find an

existing ballot program and adapt it to

our needs. There are many collections

of perl CGI scripts available through the

Web, but a quick search for voting pro-

grams was not helpful. Most of the

results were for online polls such as

“who’s your favorite actor/band/short-

stop.” These programs often allowed

one vote per computer (based on each

computer’s unique IP address). Although

this approach can prevent one person

from influencing a poll, it would not

work for us since many students might

vote from the same computer in a lab.

We designed our own voting program

that could be reused for different elec-

tions. This program relies on a data file

to generate the ballot, and then uses the

same file to tabulate results. For each

new election, we just change the data

file. This approach also allows us to gen-

erate customized ballots. Freshmen, for

example, get a ballot enabling them to

vote for freshman senators but not for

senators from other classes.

Specific Techniques
To get the list of eligible voters, the

information technology division

extracted data from our student infor-

mation system using Datatel’s Colleague

software. A simple tab-delimited ASCII

(plain text) data file was prepared with

each student’s e-mail address, PIN, class

standing, first name, and last name. The

PIN was a four-digit number randomly

Number 3 2000 • EDUCAUSE QUARTERLY 49

Exhibit 1 - Student Data File

HEAD | Senate Officers

ALL | Senate President | 1 | Richard Russo | Jane Smiley

ALL | Senate Vice President | 1 | Jon Hassler | Carolyn Chute | Richard Price

HEAD | All College Committees

ALL | Planning and Budget | 2 | Tim O’Brien | John Updike | Anne Tyler

HEAD | Class Representatives for Student Affairs

FR | Sophomore Rep | 2 | John Sayles | T.C. Boyle | William Boyd

SO | Junior Rep | 2 | Margaret Atwood | Larry McMurtry | Don DeLillo

Figure 1: Sample Sophomore Ballot

EDUCAUSE QUARTERLY • Number 3 200050

generated by Colleague.

We designed a format for the ballot

data file that would display headings

and present the candidates for each

office. The entry for each office

included the name of the office, cate-

gory of students who could vote for the

office, maximum number of candidates

to vote for, and candidates’ names.

Exhibit 1 shows a sample ballot file.

This is an ASCII file with fields delim-

ited by the “|” character. Lines with

“HEAD” as the first field indicate that

the second field should be displayed as

a heading; otherwise, the line is an entry

for one of the offices. These entries

begin with a field that shows which stu-

dents may vote for that office. “ALL”

indicates all students, “FR” indicates

freshmen only, and so on.

The second field indicates the name

of the office, such as “Senate President.”

The third field indicates the number of

candidates the voter may select. For

Senate President, for example, the voter

may select one candidate, but for Plan-

ning and Budget Committee a voter

may select up to two candidates.

The ballot data file performed a num-

ber of functions. It generated ballots for

individual voters and presented them

with the appropriate offices based on

class standing. The ballot also used dif-

ferent HTML form elements for differ-

ent offices. When only one candidate

was to be selected, we offered a radio

button, which only allows one choice in

a category. For offices with two or more

candidates, we offered a checkbox. Fig-

ure 1 shows how a sophomore ballot

looked.

The data file was used again after a

ballot was submitted to validate the

votes, making sure a voter did not

choose more than the maximum number

of candidates. If too many were

selected, an error message was displayed

and the votes were not recorded. The

ballot data were also used to tally the

results when voting ended.

HTML Forms and CGI
Programs
To allow students to vote, we created an

HTML form for them to log in, a CGI

program to process this form and gener-

ate the ballot, and a second CGI pro-

gram to record the vote. Figure 2 shows

the initial screen seen by the voters.

We anticipated that some students

would lose their PINs prior to the elec-

tion, so we added a PIN-finding feature

to the login page. Students who forgot

their PINs could use the form on the

lower half of the page to enter their

unique ID and have their PIN sent via e-

mail. This turned out to be an important

feature, since more than 30 percent of

students who voted requested their

PINs this way.

Some students would be voting from

public computers in labs, so we had to

consider security at this point in the

process. Because not all browsers

behave the same way, we tried a few dif-

ferent tactics. The login screen was

designed to expire immediately so indi-

vidual student data would not remain in

the browser’s cache. We also inserted a

small JavaScript program in the page

that would run when the “Get Ballot”

button was clicked to submit the form.

This program would erase the PIN from

the text entry box and place it in a hid-

den field. The login screen was also

designed to launch a new browser win-

dow for the students to vote. This

would allow them to close their ballot

window when they were done without

exiting the browser.

The ID and PIN from the login page

would then be sent to the first CGI pro-

gram, which would follow these steps:

• Verify ID. If invalid, give error

message.

• Verify PIN. If invalid, give error

message.

• Check to see if this student already

voted. If yes, give error message.

• If no errors, generate ballot based on

student’s class standing. Place an

encrypted version of the student’s ID

in the form as a hidden field.

The student would then make his or

her selections from the ballot.

Figure 2: Election Logon page

Number 3 2000 • EDUCAUSE QUARTERLY 51

When the student submitted the bal-

lot, the second CGI program would pro-

cess it with these steps:

• Check the encrypted ID to see if

valid. If not, give error message.

• Make sure student hasn’t already

voted. If yes, give error message.

• Check the votes against the ballot data

file. If too many candidates selected

for any office, give error message.

• If no errors, record votes in data file

and record time voted and computer

IP number in log file.

It was important for this program to

check again that the student had not

already voted. Otherwise, it would be

possible to bypass the initial login and

submit multiple votes.

Conducting the Election
Once all the forms and programs were

created and tested, we were ready to

hold the election. The IT staff used a

feature of Colleague to generate e-mail

messages to the students notifying them

about online elections and providing

their PINs. The message was sent the

week before the election, and included a

link to the online ballot. The Student

Senate publicized online voting with

posters distributed around campus, and

the college home page promoted the

election and featured a link.

Because there were no physical elec-

tion locations to be staffed, we planned

to begin voting at 12:01 a.m. on Mon-

day and continue for 48 hours. A job

was scheduled on the Web server to

activate the login screen and programs

at the appropriate time. To end the elec-

tions, a similar job was scheduled to

remove the login screen and disable the

programs.

Since Web-based voting was new at

Dickinson, the student election commit-

tee was concerned about participation.

We created a program that allowed

them to monitor voting statistics while

the election was taking place. This pro-

gram (see Figure 3) generated statistics

on the number of students from each

class voting each hour.

The final issue to be addressed was

the vote tallying. A program to count

the ballots was executed automatically

when the polls closed, and the results

were posted on the Web site within

seconds. The election process that

once took hours of tedious (and error-

prone) work was done by the com-

puter, much to the relief of the election

committee.

Post-Election Wrap
Web-based voting at Dickinson College

was tremendously successful—more

than 51 percent of students participated.

The Student Senate accepted the results

and plans to use the process again. IT

staff resources were important in making

the system work. We spent a few hours

of programming time to extract data

from the student information system

and generate the e-mail messages to

contact the students. The student elec-

tion committee created the ballot data

file, and the Web manager wrote the

perl programs that ran the voting pro-

cess. Communication between these

groups helped ensure a smooth election

process.

While the techniques we used might

not be appropriate to institutions with

different technological or student envi-

ronments, they were well-suited for us.

The online elections helped showcase

our technology while making the elec-

tion process much easier for students.e

Paul Dempsey (dempsey@dickinson.edu) is Web man-

ager at Dickinson College.

Endnotes:
1. Federal Election Commission, “National Voter

Turnout in Federal Elections: 1960–1996.”

[www.fec.gov/pages/htmlto5.htm]

2. “Student Elections at Haverford College

Attract a Big Turnout Online,” The Chronicle of

Higher Education, Feb. 18, 2000, p. A60.

3. Butch Oxendine, “Electronic Elections,” Student

Leader, Spring 1999. [www.studentleader.com/

sl_10ee.htm]

Figure 3: Voting Statistics

