
EDUCAUSE QUARTERLY • Number 3 200346

When Baltimore merchant
Johns Hopkins in the late
nineteenth century be-

queathed seven million dollars to
found a university and a hospital, he
only hinted at the nature of the rela-
tionship he intended to exist between
the two institutions.1 With separate
boards of trustees, the two institutions
evolved and grew significantly inde-
pendent of one another. This mutual
autonomy continued late into the
twentieth century.

Given the enormous growth and suc-
cess of both the university and the med-
ical institutions, a prime opportunity
to streamline the governance and inter-
nal operations of the Johns Hopkins
institutions was being missed. Hence, at
the close of the century, the two insti-
tutions were tied more closely together
when the president of the university
was charged with simultaneously serv-
ing as chair of the Board of Trustees of
Johns Hopkins Medicine (a corporate
body consisting of the Medical School,
the School of Public Health, the School
of Nursing, the Johns Hopkins Hospital,
and the Johns Hopkins Healthcare Sys-
tem) and the dean of the Medical School
was charged with simultaneously serv-
ing as chief executive officer of Johns
Hopkins Medicine.2 With such organi-

zational ties in place, Johns Hopkins
was poised to streamline its internal
operations.

One of the first steps toward stream-
lining internal operations was the
appointment of a chief information offi-
cer (CIO) and a chief network officer
(CNO) in 1999. For the first time, infor-
mation technology and network opera-
tions between the campuses at Johns
Hopkins would largely be merged. In
particular, the networked resources of
Johns Hopkins—its campus data and
telecommunications networks, its Inter-
net connections, and so forth—would be
centrally managed and operated.

The Johns Hopkins Address Registra-
tion System (JHARS) is part of this ongo-
ing process.

The Role of JHARS
The role of JHARS on the Johns Hop-

kins network is twofold:
1. It makes possible the self-signup

of Johns Hopkins-affiliated faculty, staff,
and students for access to the network
across multiple campuses.

2. It enables the centralized adminis-
tration of Dynamic Host Control Pro-
tocol (DHCP) and static Internet Pro-
tocol (IP) distribution throughout all
participating Hopkins campuses and
network segments.

JHARS provides
centralized

administration of
and self-signup

for access to the
Johns Hopkins

network

By Mark Cyzyk

JHARSThe Johns Hopkins Address
Registration System:
Anatomy of an Application

Number 3 2003 • EDUCAUSE QUARTERLY 47

The first role pulls together several
separate, tedious processes previously
required for gaining IP-based access to the
Johns Hopkins network. These discrete
processes are consolidated into a single,
simple, quick signup procedure in JHARS.

Previously, access to network segments
throughout the Johns Hopkins enter-
prise had to be individually requested
and individually granted by a member of
the IT staff. This process was time-con-
suming and error-prone. Efforts at main-
taining a comprehensive database of IP
assignments failed because a decentralized
IT staff administered IP management.

A better solution uses DHCP to provide
dynamic IP addressing to the large major-
ity of desktops at Johns Hopkins and to
maintain a constantly updated record
of DHCP clients, their owners, and the
media access control (MAC) addresses
to which those clients are mapped.

The second role allows central admin-
istration of both leased DHCP addresses
and statically assigned IP addresses. In
the first case, most DHCP stations would
be desktop systems; in the second, most
static IPs would be granted to servers,
printers, or IP-based medical equipment.
In both cases, JHARS maintains detailed
records of ownership and location for
each piece of equipment. It also main-
tains a comprehensive change log for
each owner, IP, and MAC in the system,
enabling the generation of reports of
historical data.

Finally, because JHARS is integrated
with the central Johns Hopkins direc-
tory service, it can automatically delete
DHCP clients if it is determined that
an owner of a piece of equipment is no
longer affiliated with Johns Hopkins.
In such a case, the new owner merely
has to undergo the two-minute signup
process to get the piece of equipment
back online.

Concept of Operation
The operation of JHARS was inspired by

and designed with the previous work of
those at Boston College in mind. In 1996
Boston College entered its EagleNet Acti-
vation System in the annual CAUSE (now
EDUCAUSE) award for Application Best
Practices.3 Essentially, the EagleNet Acti-
vation System was among the first Web-

based systems to enable client self-signup
for access to a DHCP network.

JHARS expands on this service by pro-
viding for
■ DHCP signup throughout multiple

campuses,
■ streamlining the processes surround-

ing static IP request and distribution,
■ maintaining detailed records of equip-

ment ownership and location (both
current and historical), and

■ doing so with current Web tech-
nologies and application develop-
ment platforms.
The following steps describe the way

JHARS works for self-signup to a DHCP-
based network.

1. A client with a previously unregis-
tered station, such as a laptop or desktop
system, plugs into a live network port.

2.The network port is part of a seg-
ment of the network for which a DHCP
server, in this case the Cisco Network
Registrar,4 is set up to service.

3.The network interface card (NIC) in
the client station broadcasts to the near-
est DHCP server, requesting an IP
address.

4.The DHCP server receives the
broadcast and notes the requesting MAC
address.

5. If the MAC address of the client
was not previously registered, the DHCP
server responds by supplying a very
short-term IP lease as well as a “spoof”
DNS address. This response is enough to
get the client station up and running on
the network.

6.Once the requesting station is up
and running on the network with a
short-term IP lease, the spoof DNS entry
ensures that all named requests resolve
to the JHARS Web application.

7.The client boots up a Web browser.
8.The Web browser is directed to the

JHARS Web application. Again, any
attempt to go elsewhere will ultimately
be foiled by the spoof DNS entry—all
DNS name resolutions point to JHARS.

9.The first the client sees of the JHARS
application is a log-on screen. The cre-
dentials supplied via this log-on screen
are passed behind the scenes—using
the Lightweight Directory Access Pro-
tocol (LDAP)—to the central Johns
Hopkins directory service. If the cre-

dentials are confirmed, the client is
logged on to the JHARS Web applica-
tion, and the username from the direc-
tory service is used as a unique identi-
fier. If the credentials do not pass the
authentication process, the client is
never logged on to the JHARS Web
application and cannot proceed with
the self-signup process.

10. Once a client is authenticated,
the JHARS Web application—again
behind the scenes—returns to the cen-
tral directory service and gleans several
pieces of information about the client.
JHARS now knows all about the client
qua person. This data, stored in the
backend database, can be used in the
future for running queries and reports.

11. Once logged on to the JHARS Web
application, the client is presented with
two functions:
■ The client station can be registered

and immediately granted DHCP
access to the Johns Hopkins network,
or

■ the client can submit a request for a
static IP, which is then vetted by the
central IT staff before being granted or
denied.
12. Upon choosing to sign up for

DHCP access to the network, the client
sees the screen shown in Figure 1. Here
the client is asked to choose an Equip-
ment Type representing the station being
registered, such as workstation, laptop,
or other device, and to indicate the oper-
ating system, if any, of the client station.

13. When the client clicks the Next
button, two things happen. First, a
record in the backend database is cre-
ated, storing the submitted Equipment
Type and Operating System values and
linked to the client’s user record. Second,
the JHARS Web application does a
lookup against all participating DHCP
servers for the IP presented by the client
Web browser in an effort to determine
which DHCP server made the short-
term lease of that IP and the MAC
address to which the lease was granted.
Once this is complete, the JHARS appli-
cation knows several pieces of infor-
mation about the client request:
■ It knows, based on a directory lookup,

quite a bit about the person making
the request.

EDUCAUSE QUARTERLY • Number 3 200348

■ It knows against which DHCP server
the request is being made. Based on
this information, it further knows on
which campus the piece of equip-
ment is situated.

■ It knows the MAC address of the
client NIC.

■ It knows the client-supplied Equip-
ment Type and Operating System of

the station being registered in the
JHARS system.
Figure 2 provides an illustration of

this screen.
14. Based on data contained in its back-

end lookup tables, the JHARS application
can determine the range of buildings in
which the client must be located on a
particular campus, but it cannot deter-

mine the precise building, nor can it deter-
mine the room within a particular build-
ing. Because these are two useful things to
know when it comes time to search the
JHARS database and run reports, the client
is explicitly asked to provide such infor-
mation on this screen (see Figure 2).

15. When the client provides these
two pieces of information and clicks
the button to submit the final request,
the JHARS application communicates
with the previously determined active
DHCP server for the request and regis-
ters the client MAC address for a long-
term DHCP IP lease.5 The DHCP client
for this particular station is now set up.

16. Once this process is complete, the
client is instructed to reboot the station.

17. Upon reboot, the client station
again broadcasts to the nearest DHCP
server and requests a lease of an IP address
and the provision of DNS services.

18. This time, however, the DHCP
server performs a lookup of the NIC’s
MAC address and notices that, indeed,
the MAC is registered as a DHCP client.

19. The DHCP server then provides
the client station with an IP address, and
the client station is up and running on
the network like any other DHCP client.

JHARS also enables IT staff and oth-
ers to submit requests for static IP
addresses. Figure 3 represents the form
the client must fill out to make such a
request.

Upon submission of this form, the
client request enters a queue. Periodi-
cally, the IT staff check the queue and, via
the JHARS Web application, grant or
deny the request. The client is automat-
ically e-mailed a message with the ulti-
mate status of the request. If the request
is denied, the IT staff member can note
the reason. Moreover, the IT staff mem-
ber can alter the request before granting
it. For example, if the requested DNS
entry is already taken or inappropriate,
the IT staff member can change it, then
grant the request based on the change.

Before an IP address or DNS entry is
assigned, the JHARS database is checked
to guard against duplicate assignments.
In fact, the JHARS Web application will
not allow duplicate assignments of IP
addresses or DNS entries, thus enforcing
good network management practices.

JHARS Opening Screen

Figure 1

Information Collected by JHARS

Figure 2

Number 3 2003 • EDUCAUSE QUARTERLY 49

Administrative Features
Again, for both DHCP and static IP

address requests and assignments, JHARS
keeps track of all data gathered during
these processes in its backend database.
This continual log of the evolving con-
tent of the network enables the most
powerful and useful administrative fea-
tures of the JHARS application—the abil-
ity of IT staff to query and run reports on
the data contained in the backend
JHARS database. Figure 4 illustrates the
screen that launches a search.

IT staff can search the backend
database and produce reports on any of
the variables that appear on the screen
in Figure 4. For example, a report con-
taining all the static IP assignments and
DHCP clients in a particular building
could be generated by simply choosing
from the Building drop-down box and
clicking the Search button. More impor-
tantly, any combination of these vari-
ables can be chosen as search criteria,
thus enabling the IT staff person to gen-
erate finely detailed reports about sta-
tions on the network.

Suppose, for example, someone
needed a list of all the DHCP clients in
Gilman Hall running Mac OS X and
owned by a member of the Department
of Philosophy. The IT staff member
would simply choose the corresponding
values from the drop-down boxes on
this screen and click the Search button,
and the report would be generated. Such
fine-grained searching and comprehen-
sive reporting was not possible before the
advent of this central repository of data
on the Johns Hopkins network.

Authorized JHARS administrators can
also alter records after their submission
in an effort to keep the data in the back-
end database as up-to-date as possible.
They do this by drilling down on a par-
ticular record to view its detail screen, as
represented in Figure 5. Here, on a sin-
gle convenient screen, everything that
the JHARS system knows about a par-
ticular station can be found, including
contact information about its owner.

From this screen, the IT administrator
can update certain data elements of the
record. For example, he can change the
IP address, DNS entry, Building, Room,
or Operating System. The administra-

JHARS Form to Request Static IP Address

Figure 3

JHARS Search Functions Screen

Figure 4

EDUCAUSE QUARTERLY • Number 3 200350

tor can also change the ownership of the
item by simply supplying a new user-
name to which the station should be
assigned. In the case where multiple sta-
tions need to be reassigned quickly and
simultaneously—as when a lab man-
ager or other person owning many sta-
tions leaves the organization—the IT
administrator can click the checkbox
and supply a new username to which all

stations owned by the previous owner
should, in bulk, be reassigned.

Finally, the record can be completely
deleted from the JHARS application, or
the Change Log can by viewed from
this screen in one of three modes: user-
name, MAC address, or IP address. The
Change Log provides a comprehensive
historical log of all changes made to the
JHARS record.

Two other administrative features are
worth mentioning: synchronization with
the external DHCP servers, and syn-
chronization with the external directory
service. First, each authorized IT admin-
istrator of the JHARS system has the
power to schedule a job whereby the
JHARS application checks its database
against a particular participating DHCP
server. If a record does not have a corre-
sponding record on the DHCP server, it
will automatically be deleted from the
JHARS database. In this way, if the local
DHCP administrator decides to manu-
ally delete records from the DHCP server,
corresponding records in the JHARS
database will ultimately “fall off,” leaving
the DHCP and JHARS systems in a syn-
chronized state.

Second, a scheduled job can be run—
although only by the JHARS Superuser—
to synchronize user records between the
JHARS database and the central direc-
tory server. If a user record in JHARS is
missing from the central directory service,
this indicates that the person in ques-
tion is no longer affiliated with the orga-
nization.6 JHARS then informs the autho-
rized IT administrators of the system via
e-mail that a particular user record is
missing from the directory service and
that the associated equipment as listed in
the JHARS database must be reassigned to
a new username. Only after all equip-
ment is reassigned will the user record be
automatically deleted from the JHARS
database. In this way, orphaned records
do not become a problem, and assigned
ownership of stations is kept current.

Problems, Concerns,
and Solutions

The toolset used in the design and
construction of this Web application
and network service includes Macro-
media’s ColdFusion Web application
development platform and the Cisco
Network Registrar (CNR) DHCP server.
The ColdFusion server was chosen as
the Web application server because of its
power, ease-of-use, and modest cost.7

Also, Johns Hopkins maintains a large
number of experienced ColdFusion
developers on staff (somewhere between
50 and 200 at a given time). The CNR
server is the DHCP server to which Johns

Changing a Database Record

Figure 5

Number 3 2003 • EDUCAUSE QUARTERLY 51

Hopkins is currently attempting to stan-
dardize across its many campuses. Spe-
cific problems, however, were encoun-
tered in the attempt to get these two
technologies to interact.

The CNR documentation illustrates
how to use the Perl programming lan-
guage to connect to and manipulate
records on the CNR server. The only
other language mentioned for creating
external applications to work with a CNR
installation is TCL. Developers using
other languages and development plat-
forms are left to their own devices to get
their applications to interact with the
CNR server. The bulk of this interaction
must occur between the Web applica-
tion server and the CNR client, both
installed on the same box.

At first, we found communications
between ColdFusion 5.0 and the CNR
client to be impossible. The ColdFusion
Markup Language (CFML) contains a lan-
guage construct, <CFEXECUTE>, similar
to system callouts in other languages8

that allows the Web application to call
external executables on the server. The
CNR client includes a simple command-
line application programming interface
(API) for communicating with it, and we
thought we could simply use the
<CFEXECUTE> tag from within ColdFu-
sion 5.0 to execute the CNR client, passing
in the appropriate arguments. However, ini-
tial experiments with this technique proved
fruitless. <CFEXECUTE> was able to boot
up the DOS batch file that executes the
CNR client, but a response from the CNR
client communicating the status of the
requested operation was never passed back
to the ColdFusion application server.

The next step was to take a close look
at the CNR batch file to determine what
exactly it calls. After examining this file
(the “ncr.bat” file), we thought that call-
ing the executable file directly (the “gui-
test.exe” file) as specified in the batch file
might work. Unfortunately, while this
method appeared to boot up the CNR
client successfully, again, no information
was communicated back to the Cold-
Fusion application.

This failure led to a frantic search for
other alternatives. Macromedia had, at
the time, recently released the latest ver-
sion of the ColdFusion application server,

ColdFusion MX. This version represented
a leap in evolution for the ColdFusion
platform, having been completely rewrit-
ten to run on top of a Java application
server. We hoped that something sig-
nificant might have changed with the
way the <CFEXECUTE> tag communi-
cates with the underlying DOS shell
between CF 5.0 and the Java-based
CFMX, so made a final effort to call the
guitest.exe executable from within a
development version of CFMX. It worked!
<CFEXECUTE> was able to boot up the

CNR client, passing in the appropriate
arguments via the command-line API,
and to receive the appropriate response
in return. (See the sidebar for a more
detailed explanation of our solution.)

While the structure of communica-
tion between the ColdFusion server,
CNR client, and CNR server works, it is
less than optimal. In fact, it closely
resembles the Common Gateway Inter-
face (CGI) era of Web application devel-
opment, when, for each Web browser
request, the Web server would execute

The following code illustrates the process of calling the CNR client and passing

in arguments for it to pass to the CNR server, querying whether the CNR server

leased a particular IP address and, if so, what the MAC address of the station was:

<cfsavecontent variable=“this CommandOutput”>

<cfexecute name=“#theExecutable#” arguments=“-e

#getRegistry.NRCMDLocation# — -C #CNRClusterName# -N

#CNRUsername# -P #thisCNRPassword # lease #currentIP# macaddr”

timeout=“10”></cfexecute>

</cfsavecontent>

The first thing to notice about this example is that the CFML <CFSAVECONTENT>

tag is used to save to a variable any output generated by the <CFEXECUTE> call.

The contents of this variable will be analyzed further down in the script and used

to determine how to proceed. Next, the <CFEXECUTE> tag is called, first passing

in a variable containing the name of the file to be executed (in this case, the gui-

test.exe executable), then passing in several command-line arguments. The

#getRegistry.NRCMDLocation# variable contains a string representing the direc-

tory in which the guitest.exe and ncr.bat files are located. The #CNRCluster-

Name# variable contains a string representing the name of the CNR server to

which the client is being directed to connect. #CNRUsername# is the username of

the administrative user on the CNR server. #thisCNRPassword# is the administra-

tive password on the CNR server. The term “lease” indicates our wish to have the

CNR client query the CNR server for current lease information. #currentIP# repre-

sents the IP address we are interested in knowing about, and “macaddr” ensures

that the CNR server will return the MAC address currently leased to the passed-in

IP address. Finally, the CFML “timeout” attribute is set, limiting the current opera-

tion of the <CFEXECUTE> to 10 seconds.

Lessons learned: For this system callout to work, the full path to the directory

where both the ncr.bat and guitest.exe files are located must be in the PATH of the

server. That directory path should not contain spaces. After a reboot to make abso-

lutely certain the PATH environmental variable is properly set, the code will work.

Booting Up the CNR Client

EDUCAUSE QUARTERLY • Number 3 200352

a separate external process, the results of
which would be passed back to the Web
server, then back to the Web browser.
This continual booting of external pro-
cesses, not in-line with the main Web
server process, was resource intensive
and resulted in extremely sluggish
response times. This is a problem with
the way JHARS currently operates, too.

Another problem arises because the
current CNR client is tied to a specific
network, that is, it can only communi-
cate with CNR servers residing on the
same physical network. This works fine
for most of the Johns Hopkins cam-
puses, but if the CNR client could com-
municate with CNR servers on remote
networks by, say, IP address instead of
the current “CNR Cluster Name”
method, then the remote networks of
Johns Hopkins in Nanjing, China, and
Bologna, Italy, could use the JHARS
application for network management.

The best solution to these problems
would be for Cisco, in the next iteration
of their CNR Server product, to include a
built-in client that would work as a Web
Service over encrypted HTTP traffic. This
would enable Web application develop-
ers to use any language capable of com-
municating with an accessible Web Ser-
vice to write code that directly interacts
with the CNR server over the Internet,
negating the need for the local installa-
tion of a client executable and eliminat-
ing the requirement to be present on the
same physical network as the server.9 We
hope that a future release of the CNR
will include this key functionality.

Current Status
On December 6, 2002, JHARS went

live with an overnight migration of
approximately 250 stations from static
IP addresses to DHCP. No problems were
reported, and the migration, and its use
of JHARS, was deemed immediately to be
a success. Since that time, several other
network segments on the Johns Hopkins
network have gone live with JHARS.
Plans for expansion of the use of this crit-
ical tool across yet other segments of
the Johns Hopkins network are under
way, most notably on the Johns Hopkins
Bayview campus, at the Johns Hopkins
Hospital, and at the Peabody Institute.

As of this writing (March 2003), reports
are surfacing of LAN managers across
Johns Hopkins using JHARS with great
success and without training. They are
embracing it and commenting on how
easy it is to use. The fact that JHARS pro-
grammatically determines a station’s
MAC address, without user intervention,
has eliminated the most error-prone part
of the previous IP signup process: man-
ual input of MAC addresses. Elimina-
tion of this problem has enabled the
compilation of far more accurate records
and, overall, simplified IP management.

Hodson Hall, a Johns Hopkins facility
recently built with the express purpose
of supporting information and instruc-
tional technology in the classroom, is
now fully online with JHARS. Students
plug laptops into Ethernet ports or con-
figure their wireless cards for DHCP and
are online in minutes. No problems have
been noted.

These early reports are anecdotal, and
no systematic survey of user satisfac-
tion with the JHARS service has yet been
undertaken. Nor has there been a rigor-
ous effort to predict the long-term effects
of JHARS on network management effi-
ciencies and its probable impact on
staffing. Still, the reception of JHARS
has been overwhelmingly positive, and
all indications are that it will continue
to enable students, faculty, and staff to
easily access the Johns Hopkins net-
work. It also greatly streamlines and
adds value to the network management
processes required of central IT staff. e

Acknowledgments
I wish to gratefully acknowledge and thank
the following individuals at Johns Hopkins
for their direct and indirect contributions
to the creation of the JHARS Web application:
Eric Cronise, Brandon Lockett, Craig Ponton,
Calvin Sproul, and Dean Zarriello.

Endnotes
1. Johns Hopkins did specifically note that

the hospital was to “ultimately form a
part of the medical school of [the] Uni-
versity.” But he didn’t explicitly assert his
wishes as to the exact nature of the rela-
tionship. This was complicated further
by the fact that each institution had its
own board of trustees. See John C.
French, A History of the University Founded
by Johns Hopkins (Baltimore: The Johns

Hopkins University Press, 1946), pp. 4–5.

2. The organizational chart for Johns Hop-
kins Medicine, clearly illustrating the inter-
locking governance structure of the uni-
versity and Johns Hopkins Medicine, is
posted on the Web at <http://www.hop
kinsmedicine.org/facts/gover/org.html>.

3. See the Web at <http://www.educause.
edu/awards/epit/96/96bp.html>. Also,
in 1998, Cisco Systems released a white
paper detailing the Boston College pro-
ject. This paper is posted on the Web at
<http://www.cisco.com/warp/public/cc/p
d/nemnsw/nerr/profiles/bosco_cp.pdf>.

4. For current information about the Cisco
Network Registrar product, see <http://
www.cisco.com/warp/public/cc/pd/
nemnsw/nerr/index.shtml>.

5. This server functions as the primary
DHCP server in a particular CNR instal-
lation. For each primary server there is
a corresponding secondary, backup
server. At this point in the registration
process, a DHCP client is generated on
both the primary and secondary servers.

6. It is Johns Hopkins policy to delete, not
merely flag, records from the central
directory service when a person is no
longer affiliated with the organization.

7. For an overview of the ColdFusion plat-
form and a brief comparison with its
main competitors, see Mark Cyzyk,
“Script Junkie: ColdFusion Markup Lan-
guage,” Web Techniques, Vol. 5, No. 8,
August 2000; on the Web at <http://
www.newarchitectmag.com/archives/200
0/08/junk/>.

8. For instance, the exec() and system()
functions and the backtick (` ̀) operator
in PHP and Perl.

9. Communications with Web Services are
easy to write in CFML. Some sample
code:

<cfinvoke
webservice=“https://someCNRserver.
jhu.edu:8500”method=“get MAC”

returnVariable=“theMAC”>

<cfinvokeargument name=“ip”
value=“#ip#”>

</cfinvoke>

In this case, a particular method of a
Web Service is being invoked (the “get-
MAC” method), passing in an IP address
as an argument. The result is saved in the
#theMAC# variable.

Mark Cyzyk (mcyzyk@jhu.edu) is the Web
Architect at the Johns Hopkins University in
Baltimore, Maryland, and is currently in the
doctoral program in Information Systems at
the University of Maryland, Baltimore County
(UMBC).

