
V I E W P O I N T

Number 1 2003 • EDUCAUSE QUARTERLY 5

When considering strate-
gies for addressing
application and data

needs in higher education, most
vendors and many institutions
approach the problem as a choice
between make or buy. Should we
purchase all-in-one suites offered by
solutions vendors such as People-
Soft, Oracle, and SCT, or should we
create what we need? While com-
pelling rationales support both
approaches, there are also compelling
exposures that render “make versus buy”
a moot question because neither make
nor buy will solve your problems.

Our answer to this dilemma is a mid-
dle ground we call “assemble.” In this
approach, one buys the best single com-
ponent for a particular function or task,
develops the rare component that does
not exist in the market, and focuses inter-
nal resources on assembling the pieces.
The result is a full-featured, yet ultimately
flexible environment specifically tailored
to the institution served. Additionally,
this approach reduces reliance on any
single vendor and seeks to compart-
mentalize the risk associated with major
application and data investments.

What follows is the rationale sup-
porting the assemble approach, as well
as the critical success factors that must
be addressed to deploy this strategy.
These factors span vendor selection and
management, institutional policies and

practices, and internal information ser-
vices capabilities.

What’s Wrong with Buy?
The attractions of the buy option are

well documented by the solutions ven-
dors. Reasons boil down to leveraging
the investment streams of large soft-
ware firms and reducing the institu-
tional investment while delivering best-
of-breed solutions—at least according
to the vendors. Those investment
streams and product functionality are, of
course, the result of the aggregate licens-
ing and maintenance fees paid by the
vendor’s customer institutions minus, it’s
hoped, healthy profit.

In that last term, healthy profit, lies
one of the dangers of the buy option: If
you are betting the majority of your
application delivery on a single vendor,
you want that vendor to be in business
and paying attention to you for a very
long time. As we’ve seen over the years,
the software business is not for the faint

of heart. Whether succumbing to com-
petitive pressures, dealing with customer
buying cycles, struggling with technol-
ogy evolution and delivery, or attempt-
ing to expand into new markets, many
supposedly solid vendors have stum-
bled, been acquired, or outright failed.

There is also risk in the implicit asser-
tion that solutions vendors have every-
thing you need. This is rare in industry
and impossible in higher education,
given the diversity of needs and insti-
tutions. Even for those institutions
deploying full enterprise resource plan-
ning (ERP) solutions, there are two tim-
ing problems. The first is that broad ERP
implementations often take so long that
by the time they are complete, the func-
tional requirements that initially justi-
fied the investment have shifted, requir-
ing adjustment either during or after
the project. The second timing prob-
lem is that solutions vendors focus your
attention on the end goal, a fully imple-
mented solution. During the multi-year

For Enterprise Applications and
Data, the Question Is Not Make
versus Buy…
…Because, while we can do both, we really need to be good at “assemble”
if we’re to own our own applications and data destinies

By Bob Weir and Rick Mickool

EDUCAUSE QUARTERLY • Number 1 20036

implementations, however, you must
keep the institution running. Accord-
ingly, you need to integrate the new
functionality and data as they come
online with the existing functionality
and data that have yet to be replaced. In
other words, you need to continually
integrate or assemble disparate
technologies.

The last danger of the buy strategy is
the vendor promise, “We’re committed
to higher education and your institu-
tion!” While the intentions of the exec-
utives who make that promise are not in
question, we find the implications unac-
ceptable. That statement implies that
the vendor will be in the business of
serving higher education and your insti-
tution for an extended period, yet—as
discussed above—the market, technol-
ogy, and management changes make
that promise suspect. Additionally, those
companies that garner the majority of
their revenue outside of higher educa-
tion may, over time, not be completely
reliable, considering the large discounts
and more problematic support of the
higher education marketplace. The ven-
dor promise is actually closer to “We’re
committed to your institution so long as
we’re interested, you follow our lead,
and you pay the bills!” Beyond the risk
that a vendor will stay in business, com-
mitment to just one or two vendors can
lead to forced release migrations, exor-
bitant maintenance fees, and a myriad
of other captive-audience behaviors.

With all of these complications, why
would anyone buy? As we’ll examine
in the next section, the answer is because
you cannot make everything you need.
The question is not whether you buy but
what you buy—and what you do with it.
You have no choice.

What’s Wrong with Make?
Although making what you need pro-

vides the ultimate in control, there are
three fatal limitations to using this as
your primary strategy: investment, dis-
cipline, and support.

From an investment standpoint, a sin-
gle institution, while perhaps able to
address a portion of its application needs
through direct development, will never
be able to meet increasing internal func-

tional demand or “keep up with the
Joneses” in terms of offering competitive
services to its constituents. In recent
years a number of universities have
formed the equivalent of software coop-
eratives, in which member institutions
pool their programming resources and
share the fruits of their labors. While
we have seen some success with this
approach at the component level, the
fact remains that this approach also
means assembling or integrating those
components as if they were purchased.

Software developed for production
use must not only support complex
functional and business processes, it
must also fit within technical and service
frameworks and provide a stable, reliable
environment for users. Development of
this type of software is a complex under-
taking requiring disciplined develop-
ment, testing, documentation, and
deployment processes, as well as expe-
rienced software developers and man-
agement. While there are certainly pock-
ets of this kind of discipline and talent
within some universities, no university
or cooperative has the processes, retain-
able skills, or investment capability to
build “industrial strength” production
software on a scale comparable to its
needs.

Regardless of where an institution
acquires its production software, on-
going defect and technical support is
imperative, given that all software has
bugs. Additionally, evolution of tech-
nology and regulatory changes (for
example, financial aid) require contin-
ual adaptation of production software.
Vendor support—while far from per-
fect—is preferable to local or cooperative
support from individuals who have non-
support responsibilities and priorities.
Locally or cooperatively developed soft-
ware components are often the prod-
ucts of one or two individuals; if they
leave the university, their knowledge of
the production system often goes with
them, leaving the software, the project,
and support at considerable risk.

So does all this mean you should never
make? No. Whether for base function-
ality or for integration, you must build
some software because you cannot buy
everything you need. The question is

not whether you make it but what you
make, how you make it, and what you do
with it. You have no choice.

Why Assemble?
At Northeastern University, we have

been deploying an assemble strategy for
the past three years, and the observa-
tions noted are hard won. Today we sup-
port a 50,000-customer environment
integrating PeopleSoft, SCT, Computer
Associates, College Board, and home-
grown legacy administrative systems,
among others, as well as a myriad of
academic enabling software and tools.
We support DB2, Oracle, Microsoft SQL,
and Computer Associates’ Integrated
Database Management System (IDMS)
databases across IBM, Sun, and Compaq
servers accessing our 11-terabyte, mir-
rored EMC enterprise storage solution.

While this environment is extremely
complex, the main benefit we have
enjoyed in deploying our assemble strat-
egy is unprecedented control of our own
destiny. This has included creating a
vendor-competitive environment within
Northeastern, which has driven down
licensing and support costs and
increased our component and tool
choices. The assemble strategy has also
allowed us to significantly reduce the
scope of new projects, improving gran-
ularity of investment while significantly
reducing the risk associated with any
one project, service, or vendor.

What’s Wrong
with Assemble?

Plenty. The assemble approach forces
you to deal with all the exposures of
both make and buy. In assemble, you
make what you can’t buy and you inte-
grate what you can buy. This requires
implementation rigor analogous to soft-
ware development. Also, in assemble
you buy what you can, albeit in smaller
pieces. As a result, for a given capability
you have all the functional-process and
vendor-reliance issues associated with
implementing a single vendor’s total
solution. In fact, assemble introduces
its own unique problems, spanning
multi-vendor relationships to disparate
technologies. There are management
and technical costs in working across

Number 1 2003 • EDUCAUSE QUARTERLY 7

multiple vendors, as well as the risk that
all fingers point back to the institution
should something break, particularly at
an integration point. Given that, the
assemble strategy is not the Holy Grail
of application strategies but rather the
least of the evils. Whether you make or
buy applications, you will assemble. You
have no choice, so you might as well get
good at it.

What’s Right
with Assemble?

Plenty. There are numerous advan-
tages to the assemble strategy. You can
enable each of the major functions
within your institution (enrollment
management, finance, advancement,
and learning management, to name a
few) with the software components that
most closely meet their functional needs
and preferences. Despite the disparity of
applications and vendors, you have the
capability to serve your varied con-
stituencies (students, faculty, staff) with
a consistent experience through the
proper application of enterprise-portal
and data-management tools. You have
the ability to swap out components as
your institution’s needs or preferences
change without ripping up a major solu-
tion suite. Your risk is compartmental-
ized, both in terms of reliance on a sin-
gle vendor and of failure of a single
project or product. Finally, you cannot
be held hostage for your entire applica-
tions platform due to escalating costs or
the vendor’s timetable for upgrades. All
these advantages add up to giving you
and your institution maximum flexi-
bility while minimizing risk.

What Does It Take to
Assemble?

Plenty. Each of the preceding sec-
tions—buy, make, assemble—ended with
the same phrase: “You have no choice.”
In any complex environment you must
do all three. The question is how to
focus on assemble as your primary strat-
egy and make or buy componentry
within that context.

We have learned that there are three
critical success factors for the assemble
strategy: institutional management and
funding, internal information services

(IS) capabilities, and vendor selection
and management.

Institutional Management
and Funding

The first institutional success factor is
actually more about a service approach
that maximizes the benefits of the
assemble strategy than about success-
ful deployment. Institutions that view
themselves as single electronic com-
munities consisting of varied but inter-
related groups and individuals have the
most to gain from an assemble strategy.
In fact, institutional portals are the best
example of the obvious need to assem-
ble multiple applications into integrated
application and collaborative environ-
ments. Given the diversity of con-
stituents served by higher education
portals, the assemble strategy is required
for broad-based yet individualized sup-
port of an institution that views itself as
a single electronic community.

The second institutional success factor
is having senior administrators who
understand and support several key con-
cepts and are willing to subvert their
individual unit priorities to the overall
benefit of each customer constituency.
One key concept is that constituencies
and individual customers are also the
customers of the balance of the institu-
tion’s functional areas and are best served
through an enterprise portal delivering
integrated services tailored to the indi-
vidual. Another key concept is a shared
responsibility with the portal delivery
team to own not only the transactions
and data within a functional part of the
portal, but also the content and the cur-
rency of the information channels asso-
ciated with any given function. Lastly,
senior functional administrators must
fully engage with the technology team
and own the resulting customer experi-
ence. This engagement includes articu-
lating and integrating business processes,
including both online and offline com-
ponents, and helping to select the soft-
ware componentry required to support
those processes.

The final institutional success factor
we will mention is funding justification.
We believe that, done right, the assem-
ble strategy is the most cost-effective

approach, particularly over the long
term, as needs escalate, technology
evolves, and vendors come and go. The
funding-justification challenge of the
assemble strategy is that a significant
portion of the cost is justified by the
customer and constituency experience
versus functional capabilities. Histori-
cally, application initiatives have been
justified along functional lines, such as
a new student services suite or an
improved HR capability. While funding
justification of components will con-
tinue to be articulated functionally, insti-
tutions will have to recognize, through
resource allocation, the priority of the
customer-centered, cross-functional
experience.

Internal IS Capabilities
A number of success factors fall to the

internal IS team, the first of which is dis-
cipline. Key to this discipline are the core
processes of production software devel-
opment, such as business-requirements
articulation, professional project man-
agement, adherence to architectural and
technical standards, and maintaining
separate development, test, and Q/A func-
tions and environments. Other important
core processes are systems integration
and environment management, includ-
ing change control, infrastructure avail-
ability, and service measurement. These
processes must be applied to both com-
ponent development and integration
management. By analyzing every pro-
ject against these comprehensive pro-
cesses, teams can deviate as required for
their success at project definition, but
only with the direct engagement and
agreement of their key constituents and
management. In this way, tradeoffs and
shortcuts are taken explicitly before the
project begins versus as the project hits
the inevitable snags.

Figure 1 represents a generic assemble
architecture with individually purchased
or made components providing a broad
range of functionality. These compo-
nents are joined from an authentica-
tion, data, and transaction perspective as
well as in the presentation to each cus-
tomer. We use this diagram to set the
stage for the balance of the information
services and vendor discussions.

EDUCAUSE QUARTERLY • Number 1 20038

The second internal IS success factor
is talent, both technical and managerial.
In addition to the technical competence
and customer focus associated with any
good IS team, the people required for a
successful assemble strategy must have
the ability to center on integration, ver-
sus creation, as their prime motivation.
Accordingly, they must be willing to
align their efforts with the overall appli-
cation, data, transaction, and business-
process standards required by this strat-
egy, along with the insistence that every
component, whether bought or made,
must “plug and play” with the balance
of the environment. With plug and play,
the team must be constantly flexible
and willing to embrace change. Also,
the core team must be permanent
employees rather than consultants in
order to reduce the cost per person and
to reduce the project and solution risk
introduced by turnover.

The third internal IS success factor is
responsive support. The combination
of plug-and-play functional compo-
nentry and personalizable portal inter-
faces means that every customer’s expe-
rience is unique, and thus every service
call has the potential to require the com-
plex triage of a one-of-a-kind environ-
ment. In addition to renewed emphasis
on customer training reflecting this
dynamic environment, customer ser-
vice representatives, whether in the call
center or visiting desktops, must be

trained to quickly assess and resolve sit-
uations where there is little certainty in
terms of the customer’s configuration.
Additionally, WYSIWYG (what you see
is what you get) tools that enable a
remote customer service representative
to witness a caller’s problem or scenario
will dramatically reduce this support
challenge.

Vendor Selection and
Management

This last critical success factor is often
the most difficult because it is where
the IS executive, despite being a paying
customer, has the least control. There
will be dozens of products from many
vendors, all of which must share com-
mon characteristics if an assemble strat-
egy is to succeed.

The first success criterion in vendor
selection has to be a healthy business
model with enough profit to allow the
vendor to focus on its customers and
product line rather than continually
focusing on the bottom line. Churn in
product strategies, support structures,
and markets is often driven by the bot-
tom line and is always disruptive. Addi-
tionally, a vendor’s competitive and cus-
tomer strategy must be structured to
allow the vendor to serve and compete
at the component (versus solution) level
and thereby avoid some of the tempta-
tions of manipulating customers within
a proprietary or closed environment.

Second, it is critical that the terms
and conditions of the vendor’s offer-
ings fully support a component-oriented
strategy. From a pricing point of view,
granularity of both individual compo-
nents and concurrent (versus autho-
rized) user charges is essential. In terms
of maintenance pricing, support struc-
tures, and trouble-call management and
charging, support offerings must also
be granular, such that an institution
need only pay for support for the com-
ponents actually in production. Addi-
tionally, license charges for develop-
ment and test environments (distinct
from production) must be zero or near
zero to enable the disciplined integration
and deployment processes noted above.

The final success criteria is the vendor’s
technology itself. The vendor’s compo-
nents need to be “plug-able.” This
includes open interfaces for transaction
processing, data structures, and external
authentication for both directory man-
agement and remote program calls. It
also includes standards-based support
for both Web-browser access (including
Internet Explorer and Netscape) and
full-client interface support across PC,
Mac, UNIX, and Linux workstations
and, eventually, handheld devices. Opti-
mally, a vendor will also present the
institution with an open data model
and a choice of database and server plat-
forms. Of course, the products need to
be current in terms of their product life

Figure 1

Access Presentation Integration Personalization Customization Collaboration

General

application

component(s)

Functional

application

components(s)

per role

Individual

application

components(s)

External

application

components(s)

Information

channels, online

support, and

the like

Enterprise Data and Transaction Services

Cross-component transaction support Decision support and reporting

Customer/constituency authentication and group management

Customer Portal Experience

Generic Assemble Architecture

Number 1 2003 • EDUCAUSE QUARTERLY 9

cycles and underlying technologies.
A final point regarding vendor tech-

nology and the assemble strategy takes
open Internet, authentication, data, and
programming standards to their next
logical step: Web Services architecture. As
noted in an EDUCAUSE Quarterly View-
point by Bernie Gleason of Boston Col-
lege, the promise of Web Services archi-
tecture is to enhance the interoperability
and minimize the integration expense
associated with assembling disparate
applications.

We have focused on what is required
for a successful assemble approach in
lieu of a broadly accepted Web Services
architecture, which is still years away.
Although the practical application of
Web Services is in the future, it should
influence your decisions today. Institu-
tions such as Northeastern will give pref-
erence to vendors supporting both the
concept and eventual rollout of open
(versus proprietary) Web Services archi-
tecture standards.

In Conclusion
Our goal in this discussion has been to

demonstrate that all institutions must
assemble and to outline what it takes to
succeed with this application and service
strategy. We do not attempt to address
the reality that within an assemble
approach there is actually a continuum
ranging from “buy as much as you can,
then assemble” to “make as much as
you can, then assemble.” Each institu-
tion must base its make/buy decisions on
a myriad of institutional, functional,
constituent, and internal technical cri-
teria not examined here.

As we have demonstrated, the cur-
rent and expanding demand for enter-
prise portals and data requires IS orga-
nizations to provide unprecedented
levels of integration and customization,
which are best enabled by an assemble
strategy. Continued volatility and con-
solidation of software providers serving
higher education requires that IS leaders
ensure independence and flexibility

going forward—attributes best protected
by an assemble strategy. Most impor-
tantly, because no single vendor will
have all the capability required to serve
a university, and, conversely, because
no university will have the capability to
build all it needs, the assemble strategy
is the most effective strategy for com-
petitive advantage and a robust, sus-
tainable technology environment. We
have no choice. e

Acknowledgments
We would like to express our appreciation to
Larry Conrad of Florida State University,
Frank Urso of Harvard Business School, and
Charlie Moran of Blackwell Consulting, as
well as numerous colleagues at Northeastern
University, for their insights, review, and
comments.

Bob Weir (bobweir@neu.edu), formerly of
IBM, is Vice President and Rick Mickool
(r.mickool@neu.edu), formerly of Babson Col-
lege, is Executive Director, Information Ser-
vices, at Northeastern University in Boston.

