
EDUCAUSE QUARTERLY • Number 3 200244

T
ypical information systems are
inflexible, not easily accom-
modating changes in business
requirements. This article iden-

tifies characteristics of a flexible infor-
mation system, using UniverSIS — a stu-
dent information system developed at
University of Cincinnati (UC) — to illus-
trate principles of flexible design. (See the
sidebar “The UniverSIS Project” for back-
ground about UC and the project.) We
demonstrate the benefits of this
approach by discussing specific features
developed to support the admissions
application process. These benefits
include increased business control over
system behavior, reuse of system solu-
tions, and reduced involvement of tech-
nical staff as business requirements
change. We examine the impact of flex-
ible design on business and technical
staff, and suggest specific steps that
developers can take to achieve system
flexibility.

What Is Flexibility?
Flexibility in a system means the abil-

ity to accommodate a change in business
requirements with a minimum of modi-
fication to system components. Since
some system components cost more to

modify than others, builders of flexible
systems focus on achieving a design that
allows subsequent modifications to be
limited as much as possible to the least-
cost-effect components. The ideal system
would be one in which changes in system
behavior result entirely from business
staff modifying data values rather than
from information technology (IT) staff
modifying file definitions or program
code. In those cases requiring coding
changes, they are restricted to local mod-
ifications that do not result in a chain
reaction of compensating modifications.

Developers can also look for
opportunities to leverage effort
by designing reusable func-
tions. Rather than addressing
each business requirement as a
separate problem, they look
for patterns of behavior and for
opportunities to establish gen-
eral solutions to types of
problems.

A stable data structure
forms the most critical ele-
ment of a flexible system.
Design of UniverSIS began
with a careful analysis of the
business data requirements and
design of the supporting files.

Recognizing that business requirements
are constantly changing, the develop-
ers designed the system to accommo-
date potential future requirements, not
just current needs. The goal was a system
that would support the most complex
real-world situation, even if such a situ-
ation did not reflect current reality. In
pursuit of this goal, developers kept a
few key questions in mind while mod-
eling the data:
■ What implicit assumptions are being

made? Such assumptions are often
difficult to recognize. For

UniverSIS:
Flexible System,
Easy To Change

Designing flexible information systems saves
time and money, now and in the future

By Robert Miller, Bruce Johnson, and Walter W. Woolfolk

Number 3 2002 • EDUCAUSE QUARTERLY 45

example, UC’s legacy systems con-
tained an implicit assumption that
the number of colleges within the
university was fixed. When UC added
a new college a few years ago, thou-
sands of hours of IT staff effort were
required to accommodate the change.
In UniverSIS, addition of a new col-
lege involves only the addition of
data values by business staff.

■ What meaning is attached to record
identifiers? Such meaning is often so
ingrained in the culture of the insti-
tution that it is difficult to eliminate.
In its legacy system, UC embedded
information about the college, depart-
ment, and subject matter in the
course number. Periodic renumbering
of courses required significant sys-
tem changes. In UniverSIS, the course
number is simply an identifier. Sep-

arate data elements record the infor-
mation previously embedded in the
course number.

■ What will change? While there are prac-
tical limits to accommodating all pos-
sible change, assuming anything can
change is a good starting point. The rule
of thumb is that change should be
accommodated through changes in
data whenever possible.

The UC Application
Process

UniverSIS includes features for admis-
sions application processing. UC’s appli-
cation process resembles that of most
universities, involving three steps:
1. applicant submits an application,
2. applicant provides the university with

required credentials, and
3. university reviews the applicant’s cre-

dentials and informs applicant of its
decision.
In the past, the application process

at UC followed this scenario. Applica-
tions were received and assigned to an
admissions counselor who monitored
them until all credentials had been
received. At that point, the counselor
evaluated each applicant’s credentials,
made a decision, and recorded the deci-
sion in the system. Although the results
were recorded in electronic form, the
review process itself was entirely manual.

Based on their academic credentials,
applicants for a particular academic pro-
gram fell into one of three groups:
■ clearly admissible
■ clearly not admissible
■ admissible but in competition

with others
Applicants who were clearly admis-

University of Cincinnati
Profile
■ Founded 1819

■ Second-largest state university in Ohio

■ 35,000 students

■ 5,000 Faculty and Instructors

■ 5 campuses

■ 17 colleges and schools, including

Law and Medicine

■ 250 undergraduate programs/majors

■ 150 graduate programs/majors

The UniverSIS Project
In the mid-1990s, the University of

Cincinnati (UC) faced the need to

retire its legacy student information

system. The system was in fact a set of

individual systems that supported spe-

cific business processes and were used

exclusively by individual business units.

The systems interfaced via batch feeds

of data. A significant amount of data

was stored redundantly. Most of the

systems were written in PL/I using

VSAM files for data storage; one major

component used an IMS database.

UC decided to replace these systems

with a single, integrated student infor-

mation system. When existing vendor

product suites were found to meet

only 60 to 70 percent of the univer-

sity’s needs, UC decided to build the

system. Most of the system was cus-

tom-developed, but vendor products

were used for specific purposes. The

design of the system emphasized prin-

ciples of flexibility.

System Scope
■ Demographics: personal information

■ Curriculum: colleges, courses,

academic programs, classes, class-

room scheduling — Series 25

(CollegeNet)

■ Admissions: recruitment and appli-

cation processing

■ Financial Aid: Financier (Wolffpack)

■ Registration/Student Records

(enrollment processes and academic

records)

■ Student Accounts (fee assessments

and billing)

■ Degree Audit (DARS [Miami Univer-

sity – Ohio])

UniverSIS was implemented on

schedule, within budget, and with all

mission-critical functionality in place.

Implementation began 18 months after

the start of the project and continued in

stages. Since development and imple-

mentation overlapped, construction of

temporary interfaces proved necessary.

The existing legacy systems were retired

on the fourth anniversary of the pro-

ject’s start. Included in the implementa-

tion effort was conversion of the aca-

demic records of the 250,000+ students

for whom electronic records existed.

The UniverSIS programming was done

by fewer than six people.

UniverSIS is currently in its third year

of operation. As expected, business

requirements change frequently, and

the demand for enhancements is con-

tinuous. As hoped, the flexible design

of the system has allowed many

enhancements to be accommodated

with little or no IT intervention.

The UniverSIS Project

EDUCAUSE QUARTERLY • Number 3 200246

sible could be offered admission imme-
diately. Those who were clearly not
admissible could be denied admission
immediately. Review of those in the
third category was postponed until
the end of the application process.

The Problem
UC competes for those high school

students that all universities try to
attract — good students who fall in the
“clearly admissible” category. Success
in recruiting such students can depend
on reducing the time required to
notify them of their acceptance. A
trend among universities is “instant
admission.” As reported in the Chris-
tian Science Monitor, “...a trend toward
rendering speedy decisions in person
is turning on its head the long wait for
a ‘fat envelope’ in the mail.”1

Processing an application involves
business rules and actions based on
these rules:
1. Determine, for each academic pro-

gram, which credentials an appli-
cant must provide.

2. Determine, for an individual appli-
cant, whether all required creden-
tials have been received.

3. Determine the conditions under
which an applicant is clearly admis-
sible to an academic program.

4. Determine whether an individual
applicant is admissible.
Points 1 and 3 refer to business rules.

Credential requirements and admis-
sion requirements are typically stable,
but may change from year to year.
Experienced admissions counselors
remember the requirements. New staff
members typically need to refer regu-
larly to a procedure manual.

Points 2 and 4 refer to actions taken
on an individual application. These
actions occur only when the admis-
sions counselor becomes aware of the
need for intervention. Any delay in
that awareness translates to a delay
in reviewing the application. In addi-
tion, during peak application review
periods, even when a counselor becomes
aware of a completed application, time
and the volume of applications already
in the queue may delay review of that
application.

In an environment where instant
admission is the trend, the business prob-
lem was to expedite the processing of
applications, particularly those of stu-
dents who were clearly admissible. The
development problem was to solve the
business problem with a design that would
easily accommodate future changes.

Improving the Process,
Flexibly

In designing the system to stream-
line the process of reviewing applica-
tions, the developers identified two
independent problems: awareness and
evaluation. The awareness problem
involves identifying required creden-
tials per academic program, and recog-
nizing and recording the fact that an
application is complete. The evaluation
problem consists of identifying admis-
sion requirements per academic pro-
gram, determining that an applicant
satisfies those requirements, and record-
ing the decision.

It was critical that the solutions to
both the awareness and the evaluation
problems provide both automation and
business control over change. UC offers
more than two hundred undergraduate
programs, each with potentially differ-
ent credential requirements and differ-

ent admission standards. Each appli-
cant’s situation is potentially unique
and could require exceptions to the gen-
eral rules. A solution that required tech-
nical staff to be involved with each
change in credential requirements or
admission requirements would have
been doomed to failure.

Flexible Awareness
To solve the awareness problem, the

developers designed mechanisms to let
administrative staff define required cre-
dentials and record receipt of an indi-
vidual’s credentials.

Define Credentials. Credentials take a
variety of forms: transcripts, test scores,
letters of recommendation, auditions,
and portfolios, for example. Business
staff define and maintain credentials. A
credential definition may specify rat-
ings where appropriate. For example,
the College of Music may define a cre-
dential of “audition” with ratings from
“poor” to “excellent.”

Define Credential Requirements. Busi-
ness staff define the standard credential
requirements of each academic pro-
gram. These requirements include the
following options:
■ Levels of specificity. A credential may

be required of all applicants or limited
to specific colleges, programs, or
majors. For example, “application
fee” might be a general requirement,
but “audition” might be a require-
ment specific to applicants to music
or dance programs.

■ Count. Multiple credentials of the
same type may be required, such as
letters of recommendation.

■ Verification. Upon receipt of a cre-
dential, the content and validity
might need to be verified separately
(letter of recommendation, transcript).

■ Alternatives. A credential requirement
can be met in an alternative way, as
when one test result may be substi-
tuted for another.

Record Receipt of Credentials. Business
staff record receipt of an individual’s
credential as a document. Multiple ver-
sions of the same document might be

It was critical that the

solutions to both the

awareness and the evaluation

problems provide both

automation and business

control over change.

Number 3 2002 • EDUCAUSE QUARTERLY 47

recorded for an individual. In addition
to the credential information itself, busi-
ness staff might record expiration date/
term and free-form notes.

Achieving the objectives. The solu-
tion UC developed addresses all of these
considerations. When an individual
applies for admission to an academic
program, the system retrieves the set
of credential requirements pertinent to
that program. These standard require-
ments are copied to the individual’s
application profile. The admissions
counselor can customize the applicant’s
requirements to accommodate any spe-
cial circumstances, such as home school-
ing, foreign schooling, or need for
English proficiency certification. The
list of required credentials functions as
a checklist.

As an applicant provides credentials,
receipt of each credential is recorded as
a document. The system automatically
matches the individual’s credential
requirements — the checklist — against
the documents received. When each
item has been checked off, the system
changes the status of the application to
“Ready for Decision.”

The credential-related mechanisms
described above provide a high degree of
flexibility. No IT intervention is required
to define new credentials or to maintain
credential requirements. Unique needs
of individual applicants — exceptions to
the rules — can be accommodated
within the system, again without IT
intervention.

It is important to note that the con-
cept of documenting credentials did
not come directly from the admissions
staff. They expressed their require-
ments very specifically: application
fee, letter of recommendation, test
score, high school transcript, and so
on. The UniverSIS developers, thinking
in terms of flexibility — accommo-
dating change — identified a general
category into which these specific
items could be grouped and identified
a pattern of data elements needed to
support members of that category. That
pattern has proven to be consistent
with the pattern of documenting cre-
dentials in general. The developers

have been able to reuse the creden-
tial/document mechanism for other
business purposes. For example, it is
used to record that an incoming stu-
dent has attended freshman orienta-
tion and when a student’s address
information was last verified.

In addition, the mechanism has been
enhanced over time. The expiration date/
term and free-form notes were later addi-
tions, prompted by the experience of
the business staff. These modifications
did require intervention by the IT staff,
but the modifications were localized.

Flexible Evaluation
The solution of the evaluation prob-

lem allows administrative staff to define
admission requirements and provides a
mechanism that lets the system evalu-
ate credentials automatically. The first
step was to identify the factors that the
colleges consider in making their deci-
sions. At the undergraduate level, the
number of factors was small:
■ High school GPA
■ Percentage rank in high school class
■ Ohio High School Proficiency Test

rating
■ Best ACT or SAT math score
■ Best composite ACT score or SAT total

score
■ High school core courses completed

The developers designed a mecha-
nism that lets administrative staff define
requirements in the form of logical state-
ments about the factors. Requirements
are attached to the appropriate academic

program and can be as simple or as com-
plex as necessary. A requirement has
date-sensitive versions. This permits
maintaining a history of requirements.
It also allows administrative staff to pre-
pare and test new versions of require-
ments without affecting current pro-
cesses. IT staff get involved only when
a new factor is defined.

A fictitious example using the 22BBA
Accounting program (see Figure 1) in
the College of Business illustrates the
design. Any applicant for this program
between Terms 01W and 05U who meets
the requirement called ACCT will auto-
matically receive an admission decision
of “OF” (Offered). In other words, if the
applicant meets the criteria found in
requirement ACCT, the system will auto-
matically admit the applicant to the
22BBA ACCT program.

Figure 2 shows that the requirement
called ACCT specifies two conditions. If
either condition is satisfied, the require-
ment has been met.

The first condition is shown in Figure
3. The second condition would be the
same except that SAT scores are specified
instead of ACT scores.

A mechanism called Evaluator com-
pares the applicant’s credentials to the
criteria specified in the requirements.
This mechanism consists of two com-
ponents: retrieval and analysis. The first
component retrieves an individual’s data
for the specified factor. The component
consists of a set of modules, each corre-
sponding to a decision factor. For exam-

Example of Decision Rules
===

Maintain Admission Decision Rules

*Academic Program: 22BBA _____ Bachelor of Business

*Academic Area...: ACCT _____ Accounting

*Decision Code: OF Offered

*Begin Term...: 01W _____ Winter Quarter 2000–01

*End Term.....: 05U _____ Summer Quarter 2004–05

*Requirement: ACCT___________ 09 12 2000 CBA ACCT Criteria
===

Figure 1

EDUCAUSE QUARTERLY • Number 3 200248

ple, one module retrieves an individual’s
high school GPA, another retrieves best
ACT math score, and so on. Once written,
these modules are available as building
blocks for an unlimited number of con-
ditions. A factor can be data retrieved
directly from the individual’s record, or
it can be data derived programmatically
from a combination of records, such as
ACT-BEST-MATH.

The second component analyzes the
applicant’s data, comparing it against the
requirement, factor by factor, until it can
be determined whether the applicant has
satisfied all criteria. The conditions
described earlier are stored in the form of
a logical binary tree. The mechanism that
performs the analysis parses the binary

tree, plugging in the individual’s data val-
ues appropriately, and returns either a
“true” or “false” value. When all criteria
have been satisfied — the result is true —
the system records the decision auto-
matically on the individual’s application.

The business objective was to design a
mechanism that would allow the system
to admit qualified applicants automati-
cally. The technical objective was to meet
the business objective with a design that
was flexible. Both objectives were
achieved. Business staff in the admis-
sions office maintain the requirements
without IT intervention.

The effort to develop the Evaluator
tool was significant and complex. How-
ever, the payoff justifies the work. The pat-

tern of evaluating an individual’s data
profile against a set of criteria has proven
to be one that repeats itself in many busi-
ness processes. For example, the Student
Accounts office maintains all rules for
assessment of tuition and fees, and the
Registrar’s office maintains rules for reg-
istration restrictions. As rules change,
business staff make the necessary system
adjustments. UniverSIS provides a tool
that allows business staff to test require-
ments online. Staff can view the result of
each step of the analysis to pinpoint any
difficulties with the logic.

A reusable tool such as the Evaluator,
used for multiple purposes in multiple
business units, presents potential risks.
Without some control mechanism, staff
in one business unit might inadvertently
make changes that affect another unit’s
processes. To address this issue, UniverSIS
segments Evaluator requirements by type,
ensuring that only authorized staff mem-
bers maintain them. Every business pro-
cess that uses the Evaluator is tied to a
requirement type.

The Improved UC
Application Process

Solution of the awareness problem
has improved application processing
significantly. Admissions counselors
review applications “Ready for Deci-
sion” and take action only on those
applications for which the system was
unable to make an automated decision.
The system functions as each counselor’s
self-maintaining “to do” list. Counselors
no longer review applications for com-
pleteness. The system does that. This
feature is especially valuable for new
counselors who are unfamiliar with the
requirements of each program.

UC chose to implement automated
evaluation of applications as a batch
process. Each night, the system identi-
fies applications that have reached
Ready for Decision status and evaluates
them. For any applicant who meets the
requirements, an offer of admission is
recorded and an offer letter is auto-
matically generated.

With the automated evaluation mech-
anism in place, the UC admissions office
can mail an offer letter to a clearly admis-
sible applicant within 48 hours of the

Conditions for “ACCT” Requirement
==

Maintain Evaluator Requirement

Requirement: ACCT___________

Version Date: 09 12 2000

Description: CBA ACCT Criteria______________________________________

*Conditions (meeting one condition satisfies requirement)

1 CBAACCT1_______ CBA Criteria (with ACT)

2 CBAACCT2_______ CBA Criteria (with SAT)
==

Figure 2

ACT Condition for “ACCT” Requirement
==

Maintain Evaluator Condition

Condition ID: CBAACCT1_______

Description: CBA Criteria (with ACT)___________________________

*Selection Element *OP *Value

HS-GPA _________________________ GE 3.000 _____________

AND HS-CLASS-RANK-PCT ______________ LE 25________________

AND BEST-ONGPT-RATING______________ EQ E _________________

or _________________________________ EQ P _________________

AND ACT-BEST-MATH __________________ GE 22.00 _____________

AND ACT-BEST-COMPOSITE_____________ GE 22.00 _____________

AND HS-CORE-DEFICIENCY _____________ EQ 0.000 _____________
==

Figure 3

Number 3 2002 • EDUCAUSE QUARTERLY 49

time the applicant’s documents have
been recorded, without any interven-
tion by an admissions counselor. Even
when decisions cannot be made auto-
matically, the typical turnaround time for
an application has been reduced signif-
icantly. This was evident from a cam-
pus survey in which the UC characteristic
that was rated highest by the students
was “timeliness of your acceptance.”

The automated decision process was
initially implemented for a limited num-
ber of academic programs. After one
year, analysis of the results indicates
that approximately 12 percent of the
offers of admission were made through
the automated decision process. Clearly
qualified applicants were offered admis-
sion, and also confirmed their accep-
tance, earlier than in years past. The cri-
teria for “clearly admissible” were set
conservatively, to avoid any potential
oversubscribing of the programs. The
list of academic programs for which
automated offers can be made has been
expanded, and the “clearly admissible”
bar is likely to be lowered as well. The
goal is to have 70 percent of offers made
automatically by the system. The expec-
tation is that the admissions staff will
make any system adjustments required
to achieve that goal without IT staff
intervention.

Staff Impact
of Flexible Design

A flexible system design changes the
roles of the developers and operators of
that system. In the development of Uni-
verSIS, the key business roles were played
by the individuals who could explain
current processes and also analyze and
clarify the underlying business rules and
requirements. Similarly, the developers
had to think beyond the requirements
of the current processes, understanding
the underlying rules and requirements
well enough to design solutions that
would easily accommodate changes in
those rules and requirements.

In analyzing business requirements,
the developers regularly posed two ques-
tions: “Why do you do that?” and “Do
the rules ever change?” The first question
was often met with puzzlement, partic-
ularly when no one was sure of the

answer. If the answer was “because we’ve
always done it that way” or “because
the system won’t let me...,” more anal-
ysis was needed. The answer often traced
back to the design of the legacy system,
in which changes almost always required
modifications to program code. Busi-
ness staff had found ways to work
around the system’s limitations to
accommodate changes in business
requirements, often by recording odd
values in fields designed for a completely
different purpose — “beware the aster-
isk.” Over the course of the project, the
business staff began to recognize that
workarounds occurred because often it
was too difficult to change the system.

The experience of long-time business
staff was particularly important in
answering the second question. They
knew that the answer to whether the
rules ever change was “Yes!” They knew
which business requirements had been
stable over time and which changed on
a regular basis.

The good news is that business staff
have come to see the value of flexibility,
particularly in putting direct control
over change in their hands. The bad
news, or so it sometimes seems, is that
the business staff have active responsi-
bility for maintaining business rules as
data, which involves a lot of work. Before
a system feature can be implemented,
the rules have to be in place. In addition,
because formerly separate modules are
now integrated, staff in one business
unit have to communicate more closely
with their colleagues in other units. The
impact of change can be far reaching and
may be felt immediately in unexpected
places. Ultimately, however, this is good,
requiring the various business units of
the university to follow a consistent set
of business rules and to explore the
potential impacts of change.

In addition, the nature of system test-
ing has changed. Changes to business
rules ideally do not involve changes in
program code. Testing has become, there-
fore, not only a significant responsibility
of business staff but an activity for which
they are almost solely responsible.

The change for the IT staff has been
equally significant. Just as the front-line
business staff traditionally concern them-

selves with individual processes, pro-
gramming staff traditionally concern
themselves with coding programs to sup-
port those processes. Because the flexible
UniverSIS design allows business staff to
exercise control over much of the sys-
tem’s behavior, programmers do not
spend their time on the traditional task
of recoding programs when business
rules change. Instead, they design and
code solutions that frequently work indi-
rectly. Programs often don’t contain the
actual business rules. Instead, they con-
tain the logic to look up the rules.

Furthermore, since the developers
have isolated many reusable pieces of
complex logic, programs are often
assemblies of references to other spe-
cialized programs. This approach takes
some getting used to. It also requires
good communication and documenta-
tion. The independent-minded pro-
grammer who would rather do things his
or her own way presents a significant
barrier to the success of such an
approach. It is critical that management
take an active role in establishing and
enforcing adherence to standards,
including the concept of reuse. While
design and construction of flexible solu-
tions initially may take longer than task-
specific solutions, over time flexible
solutions lead to a significant reduction
in routine system maintenance and an
increase in the amount of time available
to IT staff for new projects.

Designing Flexible Systems
An information system that incorpo-

rates effective use of flexible design embod-
ies a set of technical principles. It also
reflects an understanding of the attitudes
of both the IT developers and business
staff who will be involved in the project.

Technical Guidelines
To design a system that is flexible,

developers should
■ Conceptualize the system as a whole

dynamic entity, not as a set of connected
pieces. The goal must be an integrated
system with a shared information
structure, not one in which inde-
pendent modules are merely inter-
faced, passing information back and
forth between one another.

EDUCAUSE QUARTERLY • Number 3 200250

■ Define and enforce consistent design
standards for both technical require-
ments and the user interface. A data
dictionary is essential to defining
standard fields and relationships
among entities. Use of program mod-
els and templates facilitates coding. A
code generator, in conjunction with
the active data dictionary, signifi-
cantly reduces the amount of manual
coding required. Technical managers
must ensure that standards are doc-
umented and enforced.

■ Separate the user interface, business rules,
and data (n-tiered architecture). This per-
mits use of a new interface medium,
such as the World Wide Web, without
change to business logic or data stor-
age. It’s not just the business that may
change — the world is also changing.

■ Identify logical data entities and entity
types, and maintain them as individual
objects. The object maintenance pro-
gram performs all maintenance of
entity records. All business rules are
enforced through that program, ensur-
ing that those rules are applied consis-
tently. Variations of entity types must
considered in the design. For example,
a Person may be an Applicant, a Stu-
dent, an Employee, and so on.

■ Eliminate meaning from record keys.
Keys are simply pointers to unique
records in the database. For user com-
fort, naming conventions may be
needed, but meaning must not be
embedded in the name, and enforce-
ment of business rules must not use
a naming convention.

■ Store business rules as data. Changes in
business rules are the most likely trig-
ger of system modifications. When-
ever possible, business rules should be
maintained by business staff, reduc-
ing the need for file and program
maintenance by technical staff.

■ Code reusable logic in callable routines.
Documenting such routines is an essen-
tial aspect of technical management.

■ Develop general-purpose, reusable busi-
ness processes whenever possible. Sepa-
rate business processes often follow a
common pattern. Develop general-
purpose, rather than purpose-spe-
cific, processing tools.
It is essential that developers recog-

nize inflexible design and correct it. At
times the developers of UniverSIS missed
requirement details or made incorrect
assumptions about what could change.
On such occasions, they tore apart what
they had done and redesigned it. Though
painful, the effort of correcting the design
to make it more flexible was worthwhile
in the long run. The tools used to develop
the system made the effort much less
painful than it might have been. (The
sidebar “UniverSIS Tools and Techniques”
summarizes the technical tools and
environment.)

Participant Attitudes
While the technical environment and

tools play important roles in the design
of flexible systems, no less important
are the attitudes of project participants,
who must have confidence in the con-
cept of flexible design. The lead devel-
opers of UniverSIS had such confidence,
having been involved in designing other
flexible systems. The confidence of the
UC business staff evolved over the course
of the project, as the effectiveness and
benefits of flexibility became clear.

To establish the needed confidence, an
organization might want to begin with

a demonstration project involving a sig-
nificant but not mission-critical system.
Those involved in the development of
this system should agree to the following
behavioral guidelines:
■ Be committed. Everyone, from the project

sponsors to the technical staff, must be
committed to the goal of flexibility. Busi-
ness and technical staff must ask two
questions: “How might this change in
the future?” and “How can that change
be accommodated through changes in
staff-maintained business rules?”

■ Be patient. It may take longer to develop
a flexible solution than a specific solu-
tion until developers have mastered
the tools and approach.

■ Be persistent. Under pressure, develop-
ers are tempted to go with a quick-
and-dirty (inflexible) solution, with the
intention of going back later to do it
right. Resist this temptation. Eventually,
the time saved with the quick-and-
dirty solution is lost many times over
to the effort required to maintain it. If
a design is recognized as insufficiently
flexible, redesign it. Everyone will learn
from the experience.

■ Think in a new way. This is essential and
rewarding at the same time. The chal-

UniverSIS Tools
and Techniques

UniverSIS was built using the Soft-

ware AG development tool set. It

runs in a mainframe environment.

■ ADABAS is the DBMS.

■ NATURAL is the fourth-generation

language.

■ PREDICT is the active data

dictionary.

■ CONSTRUCT is the code

generator.

At the outset, project stakeholders

agreed to use standard CONSTRUCT

models and a consistent look-and-

feel for presentation of information

on screens. This facilitated both tech-

nical development and training of

business staff. The system behaves in

the same way regardless of which

component is being used.

UniverSIS uses standard CON-

STRUCT object models for mainte-

nance of data. All data is stored in

ADABAS, and maintenance of all

records is managed through object

subprograms, which enforce the

stored business rules. The developers

used PREDICT extensively within Uni-

verSIS, both to provide documenta-

tion and to enforce standards. The

system was developed with main-

frame screens as the user interface,

but that interface contains no busi-

ness logic. This approach permits

easy substitution of a different inter-

face, such as the World Wide Web.

Number 3 2002 • EDUCAUSE QUARTERLY 51

lenge of devising programs that adjust
their behavior based on changes in
staff-maintained business rules can
release pent-up creativity. This is a far
cry from the typical hostage situation
where IT professionals have no time,
no resources, and no charter to imag-
ine anything new.

■ Develop general-purpose, reusable busi-
ness processes whenever possible. Separate
business processes often follow a com-
mon pattern. Look for that pattern.
Develop pattern-oriented processing
tools rather than purpose-specific pro-
cessing tools. Ask “How else might we
use this tool?”
Having developed one flexible system

that stands up well to changes in business
requirements, both business and techni-
cal staff will gain confidence in the con-
cept of flexibility and in their ability to
design other flexible systems.

Flexibility in Practice
The following brief examples illustrate

the positive impact of flexible design. In
an inflexible system, the required modifi-
cations would have been costly, time-
consuming, disruptive, or not done at all.

On-Campus Transfer
In the past, students who wanted to

transfer from one college to another
within UC were required to go through
a procedure that involved paper forms
and manual processes. Adding a single
code to a staff-controlled table, for “on-
campus transfer application,” allowed
the UniverSIS admissions module to be
used for this new purpose. All necessary
system modifications were performed by
business staff modifying data. The paper
process has been eliminated.

Tuition and Fees
The university was faced with a sudden

and unexpected mid-year drop in financial
support from the state. In the middle of
autumn quarter, a decision was made to
increase all tuition and fees as of winter
quarter. All rate adjustments were performed
by business staff in less than two business
days. No IT intervention was required.

Correspondence Control
UniverSIS provides a correspondence

management feature that can be used to
generate personalized letters. The feature
was initially developed to produce offer
letters for the admissions office. Without
any changes to program code, the Col-
lections office was able to use the same
feature to generate personalized letters
to students with delinquent accounts.
All correspondence-related work was per-
formed by business staff modifying val-
ues in UniverSIS. The only change that
involved technical staff was setting up a
new batch job.

Financial Oversight for Athletes
UC, like other large universities, is fre-

quently under scrutiny by the NCAA to
make sure athletes aren’t getting money
they should not be getting. The athletic
director ordered that the system be mod-
ified — immediately — to block refund
checks for athletes until financial aid
award requirements had been verified.
Only 12 hours of programmer time were
required to develop the required modifi-
cation, which includes automated block
of refund checks and automated e-mail
notification of the Athletics department
when a change in an athlete’s enroll-
ment or financial aid status occurs. The
developers were able to adapt and reuse
existing features, significantly reducing
the need for custom coding.

Results Justify the Effort
Flexible features form the tool set for

the business staff. As they learn the tools
and gain confidence in them, they want
to use them for every possible purpose.
As new business requirements have
emerged, business staff recognize how
much direct control they have and appre-
ciate the value of reuse and consistency.
There have been situations in which the
business staff accommodated a com-
pletely new requirement in minutes with
an existing feature simply through mod-
ification of data. The UniverSIS devel-
opers have been surprised, and delighted,
at the ways in which the system features
are being used. In many cases, technical
staff function only as consultants, help-
ing the business staff identify which of
the available tools would be most appro-
priate, but making no changes to pro-
grams or files.

The success of UniverSIS, or any flex-
ible system, will be judged by how well
it accommodates current and future
business requirements, and how business
staff take ownership of the system. At
UC, the business staff own UniverSIS.
The benefits of flexible design have been
clearly demonstrated. e

Endnote
1. “Why Wait? Colleges Try ‘Instant Admis-

sion’,” Christian Science Monitor, Decem-
ber 11, 2001.

Robert Miller (robert.miller@uc.edu) is Direc-
tor of Information Technology System Ser-
vices at the University of Cincinnati in Cincin-
nati, Ohio. Bruce Johnson (mountainbruce@
worldnet.att.net) is retired from a position as
associate professor at Xavier University. Wal-
ter W. Woolfolk (woolfolk@fuse.net) is Infor-
mation Systems Director for Taylor Dis-
tributing in Cincinnati, Ohio.

Suggested Reading
Johnson, Bruce, Walter W. Wool-

folk, and Peter Ligezinski, “Counter-
intuitive Management of Informa-
tion Systems Technology,” Business
Horizons, March–April 1999.

Johnson, Bruce, and Walter W.
Woolfolk, “Generic Entity Clouds: A
Stable Information Structure for
Flexible Computer Systems,” Sys-
tems Development Management,
October 2001.

Woolfolk, Walter W., Peter
Ligezinski, and Bruce Johnson, “The
Problem of the Dynamic Organiza-
tion and the Static System: Princi-
ples and Techniques for Achieving
Flexibility,” Proceedings of the 29th
Annual Hawaii International Confer-
ence on Systems Sciences (HICSS-
29), Vol. III, January 1996, p. 482.

Woolfolk. Walter W., and Bruce
Johnson “Information-Free Identi-
fiers — A Key to Flexible Informa-
tion Systems,” Data Base Manage-
ment, Part I July 2001, Part II August
2001.

