
The Software Revolution
During the past decade, a revolution has occurred in the way large
private-sector organizations acquire the software that underpins their
daily operations and generates the data they need to make better long-term
decisions. Rather than building such software themselves, or paying
someone else to build it according to their specifications, many—and in
some sectors, most—organizations have elected to purchase large
Enterprise Resource Planning (ERP) systems. Well-known ERP vendors,
including SAP, Baan, PeopleSoft, and Oracle, have grown rapidly as a
result. Although their growth has slowed temporarily as prospective
customers batten down the technological hatches for the transition to
Y2K, these ERP companies are riding the crest of a wave driven by
economic and technical factors that make their continued success likely.

52 EDUCAUSE r e v i e w � January/February 2000

A D M I N I S T R A T I V E I N F O R M A T I O N S Y S T E M S

RE-
COVER-

ING
FROM
SOFTWARE
DEVELOPMENT

BY MICHAEL R. VITALE

Michael R. Vitale is Professor in the Centre
for Management of Information Technology,
Melbourne Business School, University of
Melbourne. Earlier in his career he was the
Director of Administrative Computing at
Dartmouth College and later Associate Pro-
fessor at Harvard Business School.

I l l u s t r a t i o n b y B r a n t D a y

Some academic institutions,
including MIT, have also purchased
ERP systems, but other institutions
continue to struggle with home-
grown administrative software that is
often more expensive, riskier, and
less functional that what is available
on the market. The usual excuse for
undertaking the additional effort
involved is that the institution’s
processes and procedures are so spe-
cial that they must be supported by
custom-built systems. The premise of
this article is that most institutions
would be much better off buying
software and then adopting the built-
in best-practice processes that come
with the packages. There is simply
very little reason for colleges and uni-
versities to dilute their resources, and
distract their managers’ attention, by
focusing on software development
rather than their primary educational
mission.

Software Development
as an Inherited Disease
More than forty years after mankind
began writing software, the statistics
on software projects remain dismal.
The typical software development
project is delivered late, well over
budget, and without all of the prom-
ised functionality. And that’s the
good news—many projects deliver
nothing at all, having been cancelled
midstream when the lack of progress
became too obvious and too expen-
sive to ignore. Higher education
institutions are by no means exempt
from these problems. Take for exam-
ple CASMAC, the Core Australian
Specification for Management and
Administrative Computing.

CASMAC was intended to devise a
common set of management and
administrative systems across the
Australian university network. Some
thirty Australian universities agreed
in 1991 to develop general adminis-
trative computing systems that indi-
vidual universities could then tailor
to meet local needs. By 1993, the
group of universities had been
unable to agree on a hardware plat-
form and therefore broke into two

subgroups, one using Oracle and the
other using the “Powerhouse” devel-
opment environment supplied by
CHA Computer Solutions Pty Ltd.
The latter group of nineteen univer-
sities, called the “UniPower group,”
agreed to pay costs estimated at
approximately A$11 million for soft-
ware development and licenses; the
universities would also contribute
staff time to the project.

In 1998 the UniPower group aban-
doned CASMAC, citing the inability
of CHA to deliver the required soft-
ware. The auditor-general of the Aus-
tralian state of Victoria, who investi-
gated the failure of CASMAC, noted
that “certain deficiencies in the proj-
ect management and development
process” contributed to the failure.1

The auditor-general’s report further
noted:

Certain of the Victorian participating
universities had not:
• quantified the expected benefits to be

derived from the project, nor prepared
a cost-benefit analysis to determine
whether their participation in the
project was in the best interests of the
university;

• prepared a detailed budget to deter-
mine the likely costs of developing,
implementing and maintaining the
UniPower CASMAC software on an
ongoing basis;

• developed suitable financial manage-
ment systems to accurately record and
monitor ongoing project expenditure;
and

• established procedures to calculate and
record the cost of providing inhouse
resources to UniPower.2

Payments and in-kind contribu-
tions to the failed CASMAC project
by just four of the nineteen universi-
ties were estimated by the auditor-
general to exceed A$9 million.3 By
m i d -19 9 9, a t l e a s t t w o o f t h e
UniPower universities had pur-
chased ERP systems to carry out the
tasks they had hoped to perform via
CASMAC.

The story of CASMAC is unusual
only because it is better documented
than most other software failures.
The overall lesson is clear: software
development remains a difficult,
expensive, and risky undertaking,
even when a professional software
d e v e l o p m e n t o r g a n i z a t i o n i s
involved. Most universities have no
business doing it.

The Alternatives
The CAUSE side of EDUCAUSE
began as the College and University
Systems Exchange, founded in the
United States in 1971 to facilitate the
sharing of administrative software
among institutions of higher educa-
tion. By 1972 CAUSE had created a
software library on magnetic tape
and punched cards and had begun to
receive complaints that the software
it distributed did not match the docu-
mentation. Although EDUCAUSE
has moved away from this original

goal, the idea of using prewritten
software remains valid. There is no
particular reason, however, to imag-
ine that using software custom-built
by the technical staff of one univer-
sity will produce good results at
another—particularly if, like much
homegrown software, the system
isn’t delivering according to specifi-
cations in the first place. The better
option for most colleges and univer-
sities is to find the prewritten soft-
ware package that best fits their infor-
mation technology architecture, their
strategy, and their way of doing busi-
ness. In most cases, an institution
may not even need to issue an elabo-
rate or detailed request for proposal
(RFP). The number of truly qualified
vendors is likely to be small, and if
the university follows the lessons
learned, at significant cost, by private
organizations, it will not attempt to
make any modifications to the source
code of the package.

This approach starts in the soft-
ware market, rather than the univer-
sity. It begins with the observation
that the commercial software market
has matured to the point that richly
featured solutions are readily and
widely available. The economics of
commercial software development
are well understood and heavily favor
vendors who can sell multiple copies
of a given package, rather than devel-
oping one-off solutions.

The Objections
The primary objections to purchased
software are, first, that it is expensive
and, second, that it does not fit the
unique operational processes of a
given institution. Many educational
institutions operate under tight
spending constraints, and software
can seem expensive. One of the Aus-
tralian universities involved in the
CASMAC fiasco later spent A$30
million on its ERP system, and
another spent almost A$5 million.
Naturally, the cost of any software
must be compared with the benefits
it will provide, as well as with the cost
of other options, including custom-
built software. It is important to bear

in mind as well that, properly chosen
and implemented, purchased soft-
ware can be considerably less risky
than the homegrown variety. Most
software vendors and consultants, if
pressed, are willing to sign fixed-
price contracts with penalty clauses.
Most in-house software develop-
ment organizations are neither able
nor willing to enter into such agree-
ments, which in any case would sim-
ply result in moving money around
within an institution.

Like other organizations, institu-
tions of higher education operate day
to day on the basis of processes that
are often undocumented and the
result of historical accident more
than deliberate design. The Victorian
auditor-general’s comments, quoted
above, regarding the management
processes of the UniPower universi-
ties are probably indicative of the
overall level of process quality in
many colleges and universities. Yet
these same processes are sometimes
clung to tenaciously by staff and then
embedded into software code, often
at significant costs, by software
builders chanting the mantra of
“meeting user needs.”

Outside the front door of the Fat
Ladies Arms, a pub in Wellington,
New Zealand, is a sign titled “Cowboy
Philosophy.” The sign reads, “About
half our problems in life come from
wanting our own way, and the other
half from getting it.”4 This cowboy
philosophy sums up precisely the
difficulty of incorporating “user
needs” into software. In fact, users do
not have “needs”—for if they did, the
t y p i c a l s o f t w a r e d e v e l o p m e n t
process of prioritizing the “needs”
and selecting the ones to be included
in a new system would not make any
sense. Users have ideas, desires, prej-
udices, habits, and so on—but not
“needs.” And no administrative
process, no matter how old or well-
known, should be allowed to drive
software development unless it is
truly central to an organization’s
strategy. Accounting, financial,
human resource, and other adminis-
trative processes are highly unlikely
to be in this category for universities.

In the absence of hard evidence, it
is equally unlikely that a given uni-
versity’s processes represent best
practice. Higher education institu-
tions are not in the business of devel-
oping or honing administrative
processes and rightfully do not often
devote much attention to them. Most
universities would be better off buy-
ing a package and changing their
processes to match. This of course
requires a high degree of top man-
agement involvement and support,
without which no institution should
embark on a major software project
in any case.

Moving Forward
The importance of administrative
computing to the smooth, economi-
cal operation of a college or univer-
sity cannot be denied; indeed, as uni-
versity activities become steadily
more diverse and more complicated,
the importance of good administra-
tion, and good underlying adminis-
trative systems, will only grow. Insti-
tutions of higher education will need
to become very good at selecting and
implementing such software, includ-
ing managing the organizational and
personnel changes required for
implementation to succeed. But
there is no reason whatsoever for
most colleges and universities to
become good at writing administra-
tive software, and there is no reason
for them to tolerate badly written sys-
tems. The software market is richly
supplied with competent, eager ven-
dors of customizable packages, ven-
dors who will compete for an institu-
tion’s business. Taking advantage of
this market can be a significant step
toward overcoming an often unex-
amined habit of in-house software
development.

Notes
1. See the Web site of the Victorian Auditor-Gen-
eral’s Office (Australia): <http://www.audit.vic.gov.
au/mp99/mp99doe.htm>, May 26, 1999 (visited
October 31, 1999), paragraph 3.1.10.
2. Ibid., paragraph 3.1.14.
3. Ibid., paragraph 3.1.15.
4. A second sign outside the same door reads, “This
is the best bar in the world.” The author is consider-
ably less certain of the validity of this second sign.

55January/February 2000 � EDUCAUSE r e v i e w54 EDUCAUSE r e v i e w � January/February 2000

The better option for most colleges
and universities is to find the prewritten
software package that best fits their
information technology architecture, their
strategy, and their way of doing business.

